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Abslract. We present a tight-binding theory of the four-terminal resistances of junctions of 
single-mode ballistic quantum wires constructed out of quantum dots. The Hall and bend 
resistances depend critically on the direct coupling between quantum dots in diffeereentquan- 
tum wires. We predict that under some conditions such systems should exhibitquenchingof 
the Hall effect as well as negative Hall resistances due to quantum interference. The 
structures that we discuss are realizable experimentally. 

In the last few years, experiments on quasi-ballistic one-dimensional (ID) conductors in 
semiconductor heterostructures have revealed a number of intriguing transport pheno- 
mena associated with their junctions. These include the Roukes effect (the dis- 
appearance or ‘quenching’ of the Hall voltage across a ID conductor at low magnetic 
fields) [l], the local and non-local bend resistances of Takagaki er n l [2 ]  and Timp et nl 
[3], and the negative Hall resistance of Ford et al[4] .  These experiments have stimulated 
considerable theoretical interest in the behaviour of electrons at the junctions of ID 
conductors [SI. In this article we report on the first theoretical study of the Hall effect in 
junctions of ID conductors of a new type-ballistic conductors in the form of periodic 
chainsof quantum dots. Arrays of quantum dots have been fabricated in semiconductor 
heterostructures by a variety of techniques which confine electrons of a 2D electron gas 
toregionsabout 1000 ,&in diameter [6]. The feasibility of making a I D  ballisticconductor 
from a chain of quantum dots has been discussed theoretically by Ulloa et al [7], and 
very recently such structures have been realized experimentally by Kouwenhoven eta1 
and Haug er nl [SI. The system that we consider is in the single-mode quantum regime, 
which is not the case in the usual ID conductors [14]. However, we predict that it should 
also exhibit the interesting quenching of the Hall effect and negative Hall resistance, 
although the physical mechanism is different. The single-mode theory should be appli- 
cable to small quantum dots, a few tens of nanometres in radius in GaAs. In this case, 
the strong confinement results in a sufficiently large splitting between the lowest energy 
level that we consider here and higher levels at magnetic fields up to about 10 T [9]. 

Our model is shown schematically in figure 1, where the quantum dots are repre- 
sented by shaded circles. There is a magnetic field B applied perpendicular to the x-y 
plane containing the quantum dots. The four quantum-dot leads are connected to 
electron reservoirs at electro-chemical potentials p,, i = 1,2,3,4. There is a net current 
of electrons 1, in lead i. The voltage of the ith reservoir is given by Vi = pi/e ,  where e is 
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Figore 1. The model of a junction of quantum wires formed from quantum dots. 

the electron charge. In the usual four-terminal Hall measurement, two leads, say i = 1 
and 3, carry currents. This leads to the condition I ,  = - I ,  = I. The other two leads are 
voltageleads anddonot carry any net current,Z, = I4 = 0. Forthelongitudinal resistance 
measurements, I ,  = -Z3 = I ,  Z, = Z4 = 0 as for the Hall resistance. We also calculate the 
bend resistance that corresponds to the condition of I ,  = -Z4 = Zand 1, = I, = 0. Using 
these current conditions, the Hall, longitudinal and bend resistances R,,, R4L and R ,  
are defined in terms of Vi and Z, as follows: 

RIH = ( P z  - P4>/ze R ~ L  = (PI - Pd/Ie R4, = (PZ - P ~ I I ~ .  (1) 
The currents in the four leads can be obtained from the single-mode Biittiker 

equations [lo]: 

I ,  = i; "(  pi - x I ~ ~ ~ p ~ )  i ,  j = 1 ,2 ,3 ,4  (2) 

where Tiiis the probability of anelectronincident on the junctioninleadjbeingscattered 
into lead i and Ti, is the reflection coefficient for lead i. We ignore spin and calculate the 
Tjj using the tight-binding Hamiltonian: 

H=xJJ.BIT.)(TBl (3) 
as 

where I qe) is the tight-binding state of the cuth quantum dot. Here we assume that each 
quantum dot has only one level, i.e. the quantum wires are single mode. In the presence 
of an applied magnetic field, the transfer integrals Jmo are modified according to [lo] 

J,B + Jm8 e x ~ l i ( e / 2 W  . (rm x rs)l (4) 
where r, is the position vector of the cuth quantum dot and we choose the origin of 
coordinates in figure 1 at the central quantum dot (labelled 0) .  Suppose an electron with 
wave vector k coming from reservoir 1 is incident on the junction. The wave function 
will be scattered into the other three leads 2,3,4 and reflected partially back to reservoir 
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1. In the tight-binding model, the wave function is written as I Y) = &cnl rp,) where 1 rpn) 
is the quantum state in the nth quantum dot and c,, is the wave amplitude on the nth dot. 
C, has the following form for the four leads: c, = ehn + t 11 e-ikun ( x  < O), c, = tjleiknn 
(x  > 0), c, = tzleh" ( y  > 0) and c, = t41e-iko" ( y  < 0), where the distance between two 
adjacent dots in the ID chains is assumed to be a, til is the scattering amplitude into ith 
lead and f l l  is the reflection amplitude back into lead 1. 

Consider to start with the simplest case where only the transfer integrals between 
nearest-neighbour quantum dots in the ID chains in figure 1 are non-zero (Je8 = j ) .  In 
this case the phase factors in exp[i(e/2h)B * (re X rp)] in (4) are all equal to unity and the 
magnetic field does not appear in the Hamiltonian (3). As a consequence RH and R, are 
independent of B ,  and since for a symmetric junction in this case Tz1 = T3, = T,,, RH 
and Rs are both identically zero in the nearest-neighbour tight-binding approximation. 
For the tight-binding Hamiltonian (3), we find that the reflection and transmission 
probabilities, R = Tll and T =  T,, = Tzl = T,,, are R = 1/[4sin(ka)' + c o ~ ( k a ) ~ ]  and 
T = ~in(ka)~/[4 sin(ka), + cos(ka)']. Thus thelongitudinal resistanceobtained from the 
Biittiker formula ( 2 )  reduces in this case to: 

where E = E/j = 2 cos(ka) is the normalized band energy of the Fermi electrons, E is 
theFermienergyand kistheFermiwavevector.Figure2showstherelationshipbetween 
R4L and E .  The longitudinal resistance is almost constant and approximately equal to 
2h/ez, except close to the band edges, where there are strong junction reflections. 

Thus in order to describe the effects of a magnetic field and to calculate the Hall and 
bend resistance in tight binding theory, one should include the next nearest-neighbour 
transfer integrals j '  between quantum dots in different chains, as shown in figure I .  
According to (4), the j '  acquire a phase in a magnetic field; j '  + j'e(Z&ix @/Go) where 
the + (-) corresponds to counter-clockwise (clockwise) transfers relative to the central 
quantum dot 0. @ = 2aZB is the magnetic flux through the square whose corners are the 
dots labelled I, 11,111, IV and @,, = h/e is the elementary flux quantum. Thus the total 
phase change around the smallest closed loop in the system is @.z@/@,) = $T, where 5 

is the total phase change around the largest loop. 

R,, = (h/2eZ)/T = (h/2ez) (16 - 3e2)/(4 - E ~ )  (5)  

Thus from (3) we obtain the equations for transmission and reflection coefficients: 
j(rll + 1) - ja, =j'e'K4(tz,e-ir/4 + t 41 eirl4 1 
jt,, - jao =j'eiko[t , le- 'd4 + (,.ll + e-zika)ei+] 

jt4] - jao =j'eiko[t31eid4 + (rll + e-z24)e-ir/4] 

Eao =j[e+O + eik"(rIl + rzl + tX1 + t4[)] 

itsl - jao =ye*a(tZlei7/4 + e-id4t 41 ) (6) 

where a, is the wave function amplitude at the central dot 0 of figure 1, and E = 
2j cos(ka). The transmission and reflection probabilities that depend on magnetic field 
and Fermi energy E are obtained from (4). 

For symmetric junctions, the following magneto-resistance formulae follow from (2) 
~51: 

R ~ H  = (h/e2)(T2i - T41)/z R ~ L  = (h/e2)(Tz, + Tdl + 2T3J/Z 
R ~ B  = ( h / e z ) ( G l  - T Z I T ~ I ) / Z  

z = 7% + E,  + 27-31(T31 + TZI + T41) 

(7) 
where 

z' = (TZI + T4i)[(T3~ + TzI)* + (T31 + T~I)']. 
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Figure 2. RIL against Fermi energy E withj’ = 0. 
Insets a and b show RaH, R,, and R4B as functions 
of Fermi energy E at j ’ / j  = 0.7 for @/@Q = 0 and 
@/eo = 1.5 respectively. 
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Figure 3. R,,, RdL and R,B against magnetic field 

at j ’ / j=O.7,  E =  -1.5. The insets shows 
the variation of R,, against $/O0 at five different 
Fermi energies. 

In the present model, the resistances R,,, R4L and RdB depend on only three variables: 
the normalized Fermi energy E = E / j  = 2 cos(ka), which is common to all four reser- 
voirs; the dimensionless magnetic field @/Go = 2a2Be/h; and the relative value of the 
transfer integrals j ’ / j .  For comparison with the case ofj’ = 0, insets a and b in figure 2 
show R4H,  R4L and RqB as a function of E at two fixed magnetic fields = 0 and 
@/& = 1.5 withj’lj = 0.7. It is apparent that R4, and R4B are no longer identically equal 
to zero if the next-nearest-neighbour transfer integralj’ is included. The results [12] for 
R,,, R,, and R ~ B  against magnetic field atj’/j = 0.7 and E = -1.5 are shown in figure 3; 
they are all periodic in magnetic field with period four in units of @/&, corresponding 
to one magnetic flux quantum change through the smallest closed loop. Clearly this 
periodicity derives from Aharonov-Bohm-type interference. If we remove the central 
quantum dot from the junction (see inset in figure 3), the magnetic flux through the 
smallest closed loop is four times larger and we should expect that the oscillation period 
should reduce to one in units of @/@o. This can be seen clearly in figure 4, where all three 
resistances have period one. In addition it is clear from figure 3 that R,, and R4B are 
symmetric and that R,, is anti-symmetric about @/@o = 2 at b e d  Fermi energy E .  

That i s ,  R ~ L , B ( ~  - @/@a, E = R A L . B ( ~  -+ @/@o. E )  and R 4 ~ ( 2  - @/@o, E )  = - R , H ( ~  f 
@/&, E ) ,  which derives from the interchange of phase factors of the transfer integrals 
j;-.* and ji-, when we make asymmetryreflection about @/& = 2.  Another interesting 
effect that we find is that the Hall resistance quenches for certain magnetic field values, 
for some values of the Fermi energy and j’/j (see inset in figure 3). The quench found 
here comes from amechanism which iscompletely different from that in the experiments 
on conventional ID conductors [14]  which has been the subject of many theoretical 
papers [SI. Here it is a result of Aharonov-Bohm-type phase interference. 

The above treatment is for a junction of infinite chains of quantum dots. In reality 
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Figure 4. R4H, R,, and R*B against magnetic field for the structure without central quantum 
dot. Note RIB = 0 for E = 0 in this model. 
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Figure 5. R,,, RA, and RdB against magnetic field 
at Jl j  = 2, j ' I j  = 0.7 and E = -1.5. Inset a shows 
the geometry of model and inset b shows RllL at 
B = 0 against E ior three different values o f J / j .  

finite systems of quantum dots will be coupled to reservoirs by leads consisting of a free 
electron gas, and the matching between the quantum dot chains and these leads needs 
to be considered. Within the tight-binding framework, the effect of this matching can 
be studied in a simplified way by modelling the free electron gas leads by chains of 
quantum dots with a wider ID energy band and correspondingly larger transfer integral 
J than that of the dots forming the junction, as shown in inset a of figure 5 .  In this case 
the four-terminal resistance will also depend on J / j ,  which determines the degree of 
matching between the ID quantum dot chains and electron gas leads, as well as onj'/j. 
Figure 5 shows the Hall, longitudinal and bend resistances as a function of magnetic field 
at E = 1.5, J / j  = 2 and j ' / j  = 0.7, for the structure in inset a (the squares are dots that 
model free electron gas leads); except J ,  the parameters are the same as in figure 3. Inset 
b of figure 5 shows the dependence of the longitudinal resktance on the Fermi energy 
E at magnetic field B = 0 for different transfer integral ratios J / j  = 1.5, 5.0 and 20. 
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Comparison offigures3 and Sshows that the mismatchingdoes not change the behaviour 
of the three resistances qualitatively well inside the energy range between 2j and -2j, 
but affectstherelationship betweenresistanceandmagneticfielddrasticallyiftheenergy 
is outside of this range. Physially the reason for this is the fact that there is a strong 
reflection of incident electrons if their energy is outside of or near the edge of the energy 
band of the quantum dots forming the junction. Reflection is dominant in that latter 
range while the Aharonov-Bohm phase effect is dominant in the former. 

In conclusion, we have presented the behaviour of the four-terminal resistances of 
junctionsofinfiniteand finite ioquantumdot chainsin the tight-binding approximation. 
The Lorentz force in the usual sense does not exist in the present model, because it is 
strongly non-classical [llb]. Thus, the phase modification of the electron wave function 
induced by the magnetic field plays a crucial role in the Hall effect. As a result, we 
anticipate that the Hall resistance will quench at some magnetic fields for certain Fermi 
energies. 

We thank E Castafio for many helpful discussions. This work was supported by the 
National Science and Engineering Research Council of Canada, 
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